3.786 \(\int \frac{(d+e x)^{3/2} (f+g x)}{\sqrt{a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=209 \[ -\frac{2 \sqrt{d+e x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (4 a e^2 g-c d (5 e f-d g)\right )}{15 c^2 d^2 e}-\frac{4 \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (4 a e^2 g-c d (5 e f-d g)\right )}{15 c^3 d^3 e \sqrt{d+e x}}+\frac{2 g (d+e x)^{3/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{5 c d e} \]

[Out]

(-4*(c*d^2 - a*e^2)*(4*a*e^2*g - c*d*(5*e*f - d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*c^3*d^3*e
*Sqrt[d + e*x]) - (2*(4*a*e^2*g - c*d*(5*e*f - d*g))*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]
)/(15*c^2*d^2*e) + (2*g*(d + e*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(5*c*d*e)

________________________________________________________________________________________

Rubi [A]  time = 0.197591, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 44, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.068, Rules used = {794, 656, 648} \[ -\frac{2 \sqrt{d+e x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (4 a e^2 g-c d (5 e f-d g)\right )}{15 c^2 d^2 e}-\frac{4 \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (4 a e^2 g-c d (5 e f-d g)\right )}{15 c^3 d^3 e \sqrt{d+e x}}+\frac{2 g (d+e x)^{3/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{5 c d e} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^(3/2)*(f + g*x))/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(-4*(c*d^2 - a*e^2)*(4*a*e^2*g - c*d*(5*e*f - d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(15*c^3*d^3*e
*Sqrt[d + e*x]) - (2*(4*a*e^2*g - c*d*(5*e*f - d*g))*Sqrt[d + e*x]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]
)/(15*c^2*d^2*e) + (2*g*(d + e*x)^(3/2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(5*c*d*e)

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 656

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[(Simplify[m + p]*(2*c*d - b*e))/(c*(m + 2*p + 1)), In
t[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && E
qQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[Simplify[m + p], 0]

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2} (f+g x)}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\frac{2 g (d+e x)^{3/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d e}+\frac{1}{5} \left (5 f-\frac{d g}{e}-\frac{4 a e g}{c d}\right ) \int \frac{(d+e x)^{3/2}}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac{2 \left (4 a e^2 g-c d (5 e f-d g)\right ) \sqrt{d+e x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^2 d^2 e}+\frac{2 g (d+e x)^{3/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d e}+\frac{\left (2 \left (d^2-\frac{a e^2}{c}\right ) \left (5 f-\frac{d g}{e}-\frac{4 a e g}{c d}\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{15 d}\\ &=-\frac{4 \left (c d^2-a e^2\right ) \left (4 a e^2 g-c d (5 e f-d g)\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^3 d^3 e \sqrt{d+e x}}-\frac{2 \left (4 a e^2 g-c d (5 e f-d g)\right ) \sqrt{d+e x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 c^2 d^2 e}+\frac{2 g (d+e x)^{3/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 c d e}\\ \end{align*}

Mathematica [A]  time = 0.0993486, size = 96, normalized size = 0.46 \[ \frac{2 \sqrt{(d+e x) (a e+c d x)} \left (8 a^2 e^3 g-2 a c d e (5 d g+5 e f+2 e g x)+c^2 d^2 (5 d (3 f+g x)+e x (5 f+3 g x))\right )}{15 c^3 d^3 \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^(3/2)*(f + g*x))/Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(2*Sqrt[(a*e + c*d*x)*(d + e*x)]*(8*a^2*e^3*g - 2*a*c*d*e*(5*e*f + 5*d*g + 2*e*g*x) + c^2*d^2*(5*d*(3*f + g*x)
 + e*x*(5*f + 3*g*x))))/(15*c^3*d^3*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [A]  time = 0.05, size = 131, normalized size = 0.6 \begin{align*}{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( 3\,eg{x}^{2}{c}^{2}{d}^{2}-4\,acd{e}^{2}gx+5\,{c}^{2}{d}^{3}gx+5\,{c}^{2}{d}^{2}efx+8\,{a}^{2}{e}^{3}g-10\,ac{d}^{2}eg-10\,acd{e}^{2}f+15\,{d}^{3}f{c}^{2} \right ) }{15\,{c}^{3}{d}^{3}}\sqrt{ex+d}{\frac{1}{\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

2/15*(c*d*x+a*e)*(3*c^2*d^2*e*g*x^2-4*a*c*d*e^2*g*x+5*c^2*d^3*g*x+5*c^2*d^2*e*f*x+8*a^2*e^3*g-10*a*c*d^2*e*g-1
0*a*c*d*e^2*f+15*c^2*d^3*f)*(e*x+d)^(1/2)/c^3/d^3/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.54379, size = 227, normalized size = 1.09 \begin{align*} \frac{2 \,{\left (c^{2} d^{2} e x^{2} + 3 \, a c d^{2} e - 2 \, a^{2} e^{3} +{\left (3 \, c^{2} d^{3} - a c d e^{2}\right )} x\right )} f}{3 \, \sqrt{c d x + a e} c^{2} d^{2}} + \frac{2 \,{\left (3 \, c^{3} d^{3} e x^{3} - 10 \, a^{2} c d^{2} e^{2} + 8 \, a^{3} e^{4} +{\left (5 \, c^{3} d^{4} - a c^{2} d^{2} e^{2}\right )} x^{2} -{\left (5 \, a c^{2} d^{3} e - 4 \, a^{2} c d e^{3}\right )} x\right )} g}{15 \, \sqrt{c d x + a e} c^{3} d^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

2/3*(c^2*d^2*e*x^2 + 3*a*c*d^2*e - 2*a^2*e^3 + (3*c^2*d^3 - a*c*d*e^2)*x)*f/(sqrt(c*d*x + a*e)*c^2*d^2) + 2/15
*(3*c^3*d^3*e*x^3 - 10*a^2*c*d^2*e^2 + 8*a^3*e^4 + (5*c^3*d^4 - a*c^2*d^2*e^2)*x^2 - (5*a*c^2*d^3*e - 4*a^2*c*
d*e^3)*x)*g/(sqrt(c*d*x + a*e)*c^3*d^3)

________________________________________________________________________________________

Fricas [A]  time = 1.54105, size = 300, normalized size = 1.44 \begin{align*} \frac{2 \,{\left (3 \, c^{2} d^{2} e g x^{2} + 5 \,{\left (3 \, c^{2} d^{3} - 2 \, a c d e^{2}\right )} f - 2 \,{\left (5 \, a c d^{2} e - 4 \, a^{2} e^{3}\right )} g +{\left (5 \, c^{2} d^{2} e f +{\left (5 \, c^{2} d^{3} - 4 \, a c d e^{2}\right )} g\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}}{15 \,{\left (c^{3} d^{3} e x + c^{3} d^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2/15*(3*c^2*d^2*e*g*x^2 + 5*(3*c^2*d^3 - 2*a*c*d*e^2)*f - 2*(5*a*c*d^2*e - 4*a^2*e^3)*g + (5*c^2*d^2*e*f + (5*
c^2*d^3 - 4*a*c*d*e^2)*g)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^3*d^3*e*x + c^3*d^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)*(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{3}{2}}{\left (g x + f\right )}}{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^(3/2)*(g*x + f)/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x), x)